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Two-dimensional Strain Cycling in Plasticity

by

P. M. Naghdi and D. J. Nikkel, Jr.

Department of Mechanical Engineering
University of California, Berkeley, CA 94720

Abstract Detailed calculations are presented for strain cycling in a
homogeneous deformation that can be sustained by a biaxial state of stress
in thin-walled specimens of OFHC copper. These calculations are made with
a set of relatively simple constitutive equations within the framework of
the strain-space formulation of plasticity. The predicted theoretical
calculations, carried out in the context of small deformation, are in good
agreement with corresponding available experimental results for saturation
hardening and erasure of memory in two-dimensional strain cycling. Also,
with the use of the calculated results, a scalar quantity that characterizes
strain-hardening is plotted as a function of plastic strains. Such plots
are likely to be useful for computational purposes.
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1. Introduction

In an interesting series of experiments pertaining to two-dimensional strain

* cycling in plasticity that can be sustained by a biaxial state of stress resulting

from combined tension-compression and torsion in thin-walled specimens of OFHC

copper , Lamba and Sidebottom (1978a,b) observed the following three phenomena:

a) The occurence of saturation hardening after loading from an

undeformed state and cycling along a strain path which is

essentially an ellipse in the normal strain-shear strain plane;

b) the erasure of memory after the material has reached a state of

saturation; and

c) the nature of the post-saturation stress response for cycling

in a relatively "complex" nonproportional strain path.

With reference to the above two-dimensional strain cycling experiments, our

main objective is to examine the predictive capability of a (rate-independent)

theory of plasticity formulated in a strain space setting with the use of

special constitutive equations employed previously by Naghdi and Nikkel (1984).

Also, by employing the strain-hardening characterization which arises in the

strain-space formulation of plasticity (Casey and Naghdi, 1981, 1983, 1984a) and

which is represented by a scalar function P, we calculate (over the domain of

interest) the values of t for the material used in lae experiments of Lamba and

Sidebottom (1978a,b) and plot this as a function of plastic strains. As in the

experiments of Lamba and Sidebottom (1978a,b), our calculations are carried out

in the context of small deformation.

t The abbreviation OFHC stands for "oxygen-free high conductivity.*
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In a previous paper (Naghdi and Nikkel, 1984) comparisons were made

between the predictions of uniaxial stress and strain cycling in plasticity

and corresponding available experiments. The previous calculations (Naghdi

and Nikkel, 1984) were carried out in a strain space setting by means of

special constitutive equations obtained on the basis of a theory first

formulated relative to stress space by Green and Naghdi (1965, 1966) and

subsequently reformulated relative to strain space by Naghdi and Trapp (1975a),

along with some additional developments pertaining to loading criteria and

hardening characterization by Casey and Naghdi (1984a,b).

Description of the Strain Cycling Problem

As in the experiments of Lamba and Sidebottom (1978a,b),we consider

the combined tension-compression and torsion of a thin-walled circular

cylinder whose axis is in the x1-direction. As usual, we neglect the varia-

tion of stress and strain in the radial coordinate direction so that the

stress and strain components referred to cylindrical polar coordinates are

then independent of position. We denote the axial stress and axial strain,

respectively, by sll and ell; and similarly denote the shear stress and shear

strain, respectively, by sl2 and e12.

The analysis in Section 3 and the procedure for calculations in Section 4

require a reduction of the general loading criteria since not all components

of strain (and strain rate) are known a priori in the context of the

particular experiment considered. This reduction is discussed in Appendix A

and the results are employed in all calculations of Section 4. Our

calculations do not include those appropriate for two-dimensional stress

2



cycling, even though it is relatively easier to calculate such cycles for

materials exhibiting hardening behavior.

In the remainder of this section, we discuss in some detail the main

features of the calculated results. A summary of the calculations can be

arranged in three groups corresponding to the nonproportional strain cycling

experiments of Lamba and Sidebottom (1978a,b) as listed in the opening

paragraph of this section. The first experiment pertains to saturation hardening

after loading from an undeformed state, and the second two concern the behavior

after the material has reached a state of saturation. In each case, the strain

path in the e11-e12 plane is the input to the problem, and the stress response

(sll and sl2) is calculated from the relevant constitutive equations. A

graphical presentation of the calculated stress trajectory in the Sll-Sl2 plane

alone does not give all the relevant information, unless a knowledge of the

correspondence between all points of the stress trajectory and all points of the

input strain path in the e11-e12 plane is also known. It is therefore, necessary

to also plot the calculated results in either the s11-e11 or the s12-e1 2 plane.

For clarity's sake, we have presented the calculated results in both the sll-ell

and s12-e12 planes.

Saturation Hardening

For two-dimensional saturation hardening, we prescribe e11 and e12

parametrically as functions of time such that in the ell-e 1 2 plane the

strain path is as depicted in the inset of Fig. 1(a). This

This is because for materials exhibiting hardening behavior the loading
criteria in stress space may be used (Casey and Naghdi, 1984b),and for
two-dimensional stress cycling all of the components of stress are prescribed
in contrast to two-dimensional strain cycling where some of the components
of strain are not known a priori.

3



corresponds to uniaxial tensile loading from the undeformed state until the

axial strain reaches the value 0.00635 (point Q in Fig. l(a)) followed by

combined tension-compression and torsion controlled in such a way that e

and e12 cycle in a counterclockwise direction around the nearly elliptical path in

the inset of Fig. l(a).' The strain components e11 and e12 were

parametrically specified to be sinusoidal differing by a 90

degree phase shift. The calculated results for stresses are shown in

Figs. l(a-c) along with the experimental curves for the first few cycles

only, since the portion of the trajectory for additional cycles would crowd

the figure. Figure l(a) represents the stress trajectory and Figs. l(b,c)

are alternative representations of the calculations in the s 11-e11 and s12-e1 2

planes. Points corresponding to Q,R,S,T on the prescribed strain path in the

inset of Fig. l(a) have been labeled in Figs. l(a-c) only for the portion of

the path which represents a cycle at saturation and not for prior cycles.

These results are in good qualitative agreement with the experimental results

of Lamba and Sidebottom (1978a). In agreement with. the experimental results, the

theory predicts that saturation occurs after about four cycles. The main

differences between the theoretical predictions and the experimental results are

that the predicted maximum shear stress at saturation (point R in Figs. l(a,c))

is slightly greater than the corresponding experimental value while the

predicted maximum axial stress at saturation (point T in Figs. l(a,b)) is

slightly less than the corresponding experimental value. The reasons for

these differences are discussed in Section 5.

The actual experimental strain path in Fig. 3(a) of Lamba and Sidebottom (1978a)
is not perfectly elliptical. In the present calculations the portion of the path
in the upper half of the ell-el2 plane is specified to be the upper half ot an
ellipse with vertices on tl4 e axis at -0.00623 and 0.00635 and a semiaxis of
0.00531 in the e1  direction. The portion of the path in the lower half of the
ej -e plane islipecified to be the lower half of an ellipse with the same
v tis on the ell axis, but with a semiaxis of 0.00588 in the e12 direction.
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Erasure of Memory

Consider next the erasure of memory property observed by Lamba and

Sidebottom (1978a) in the case of OFHC copper. The phenomenon

occurs when the material has reached a state of saturation

after strain cycling along an elliptical path in the e11-e12 plane. If

subsequent linear strain paths lie within the elliptical strain path (which

was originally used to reach the state of saturation), then corresponding to

a given linear path in the el-e 12 plane there is a particular limiting

stress cycle response in the sli-s 12 plane. This process is repeated as

the material is cycled again along the strain path. Lamba and Sidebottom (1978a)

observed that a larger cycle (not necessarily along a linear path) in the

ell-e 12 plane essentially erases the effect of any previously traversed smaller

cycles and returns the material to a state in which the limiting stress cycle response

corresponds to that of the larger cycle. With the use of the linear strain paths BOB and

BFB (as the larger and smaller cycles) indicated in the inset of Fig. 2(a),

a calculation leading to a state of saturation was arrived at by first cycling

in shear along B'D'B' for four cycles followed by cycling along BICD'EBI for an

additional four cycles. Then, the effect of erasure of memory was calculated

by further cycling which alternatesalong BOB and BFB. The results of calculations

are shown in Figs. 2(a-c) along with the experimental curves from Lamba and

Sidebottom (1978a, Figs. 5(b,c)), where for clarity only the portion of the

response corresponding to cycling which alternates along BOB and BFB are

indicated, §§ The erasure of memory phenomenon is best seen in Fig. 2(c),where

§1In Lanma and Sidebottom (1978a), at the point we've iabeled D, the value of
the shear strain shown in Fig. (Sa) (the strain path in the axial strain -
shear strain plane) is somewhat different from its value shown in Fig. (5b)
(the experimental results shown in the shear stress-shear strain plane). In
prescribing the strain path for our calculations, in order to compare with
the experimental results we specified the value of the shear strain at point D
to be that indicated in Fig. (5b) of Lamba and Sidebottom (1978a).

5



along the segment of path BO the effect of the path BFB has become undetectable

by the time the trajectory has reachea point D. Thus, the larger cycle BOB

erases the material's memory of the previously traversed smaller cycle BFB. In

addition, the overall response is in qualitative agreement with the experimental

results of Lamba and Sidebottom (1978a), while the predicted shear stress is

again higher than the corresponding experimental results (Fig. 2(c)) and the

predicted compressive axial stress has a larger absolute value than the

corresponding experimental results (Fig. 2(b)). Also, the slope of the

calculated s12-e12 curve in Fig. 2kc) during loading along FB is different

than on the corresponding experimental curve. Again, these differences are

discussed in some detail in Section 5.

Complex Nonproportional Strain-Path

Now, with reference to the third experiment of Lamba and Sidebottom

(1978b), consider the predicted response for a "complex" nonproportional strain

path (using the terminology of Lamba and Sidebottom) applied after the

material has reached a state of saturation. The state of saturation is attained

in the same way as discussed earlier in the preceding paragraph, namely by

cycling first in shear followed by cycling along an elliptical path in the e li-

e12 plane. After this, a path was prescribed which returned ell and e1 2 to the

origin of the el-e 12 plane (point 0 in Fig. 3(a)) while at the same time

the plastic strains were returned to the value zero. Next let e11 and e12 be

This calculation was performed by prescribing a path unloading from the elliptical
path at a point such as B' in the insert of Fig. 2(a) on which el1=0 and allo)ing
reverse loading to take place until such a point where eP =0. At this point e has
also become essentially zero which is again indicative oferasure of memory.
versing the direction along this path until point 0 in Fig. 3(a) is reached
results in only elastic behavior.

6
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prescribed parametrically as functions of time such that in the e l-e 1 2 plane

the strain path is represented by the linear segments 0-1. 1-2, 2-3, . .. , 7-8

in the inset of Fig. 3(a). The calculated results for stresses are shown in

Figs. 3(a-c) which qualitatively agree well with the experimental results of

Lainba and Sidebottom (1978b, Figs. 2(a-d)). Moreover, the theory again predicts

the erasure of memory effect since as the path 0-1,..., 7-8 in the inset of

Fig. 3(a) is traversed a second time, the stress path becomes indistinguishable

from the first time the path was traversed. Thus, the larger path 6-7-8 erases

the effect of the previously traversed smaller portion of the path 1-6.

Strain Hardening Behavior - The Function I

In view of the fundamental role played by a scalar function 0 that

characterizes strain-hardening behavior of the material (Casey and Naghdi, 1984a),

we represent D as a surface which exhibits the nature of strain-hardening at any

elastic-plastic state with fixed values of the total strain components e11 and e12.

The surface in Fig. 4 is a plot of D(defined in Eq. (2.10)) as a function of the

plastic strains e11 and e2 for fixed values of the total strains e1 l and e121 2

prescribed in the course of calculations; in the plot of Fig. 4 the prescribed

total strains are specified to be e11=e12=0. For different values of.e11 and e12'

the surface represented by 0 merely translates parallel to the plane of ep -ep

A choice of the total strains, say (elI,e 12), specifies a particular surface

and elastic-plastic states reached by different strain paths ending at (ell,e 12 ) will

in general correspond to different points on the surface . The outer boundary of this

surface (which has the smallest valueofc?) corresponds to the state of saturation, while

the inner boundary corresponds to the largest value that can take in the domain

topographical representation of this kind was used recently in a different
context by Casey and Lin (1983).

7



of interest. A further discussion of how the surface was calculated is found at

the end of Section 4. As is evident from the plot in Fig. 4, D is always

positive; and hence, in view of the conditions for strain-hardening characterization

(see for example the conditions (8) in Naghdi and Nikkel, 1984), the material

always exhibits hardening behavior.t It also shows how 1 decreases with additionel

plastic deformation, taking its largest value at initial yield and its smallest

value at saturation. The value of is constant at both initial yield and

saturation.

tIt should be emphasized that even though one component of the stress may be

decreasing during loading while the corresponding strain component is
increasing (e.g., as in Fig. 2(b)) the material is not exhibiting softening
behavior in two-dimensional cycling.
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2. General Background and Special Constitutive Equations

With reference to a strain-space formulation of plasticity and for

the special constitutive equations used previously (Naghdi and Nikkel 1984),

we include here a brief summary of the relevant equations of the purely

mechanical theory contained in the papers of Green and Naghdi (1965, 1966),

Naghdi and Trapp (1975a) and Casey and Naghdi (1981, 1983)

In the context of infinitesimal deformation, we recall that the

main ingredients of the rate-type theory of plasticity, in addition to the

total strain eKL, are plastic strain eL and a measure of work-hardening i.KL' KL

Also, no distinction needs to be made between various measures of stress

which we denote by SKL. As usual, it is convenient to express the various

constitutive response functions in terms of the components of deviatoric

stress TKL and devi-atoric strain YKL' namely

TKL SKL K SKL KK

YKL eKL - e 5KL YKK 0

with a similar definition for the deviatoric plastic strain YKL' where

s, e and ep denote the mean normal stress, mean normal strain, and mean

normal plastic strain, respectively. For materials which are isotropic

in reference configuration and in the presence 6f Plastic incompressibility

(e-P = 0), we specify the stress response by generalized Hooke's law and the

loading functions g and f in strain space and stress space, respecitvely, by §

T
A more expanded summary is contained in Sections 2 and 3 of Naghdi and Nikkel
(1984).

"The loading functions in(2.2)with a being regarded as constant (rather than a
function of K) were used in the paper of Caulk and Naghdi (1978) and, with a
as a function of K, are the same as those used by Naghdi and Nikkel (1984).

9



g = 4 2CYKL-(+'+ 1 ))YPKL)[YK(i+ ""K ci) K
4L "KL= KL"~y I"]

=()yL )
- = f (2.2)

=(KL- 2( KKL{KL

with

(,= - C ), I+ C KO " K
a co 0 0 (2.3)

In(2.2) and (.3) the coefficients %, 9, . o , Cs are constants and u is the

elastic shear modulus. The constants a and as are so chosen that &(<) takes

the value a when K = io and takes the value as when i = KS .

We adopt the loading criteria of strain space as primary. Then,

after invoking the work assumption of Naghdi and Trapp (1975b), the

constitutive equations for the rate .)f plastic strain ePL and the rate of

work-hardening parameter Z may be expressed as (see the development among

Eqs. (36)-(42) in Casey and Naghdi 1981):

0, when g < 0, or when g = 0 and • 0,

eKL = KL (24ab
2 -a ,when g = 0 and g > 0(2.4a,b)

and

S(8(MK)T + n()y )L (2.5)KL KL KL

In (2.4)and (2.5),the quantities B are defined by

B a K(K) = (' s  (2.6)

B'n are ccnstants,

g aKL eKL L (2.7)

and on the yield surface g = 0,

A = 8& > 0 , (2.8)

IYKL "s" • (2.9)
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The yield function f in (2.2) is of the von Mises type: it is quadratic

in the deviatoric stresses and allows for translation and change in size of

the yield surface. The amount of translation of the yield surface is linear in

the deviatoric plastic strain and is also linear in i through the coefficient

6 defined by (2.3). Also, the coefficient functions $(K) and (K) which occur in

(2.5) are linear in K, they assume the respective values a and n at initial yield

when < = Ko , and both vanish at saturation, i.e., when K = K s, K = 0.

We also recall here that the strain-hardening behavior may be characterized

by means of a rate-independent scalar quantity denoted here by (Casey and

Naghdi, 1981, 1983). During loading the quantity P has the same value as f/g,

where (f/'sKL)iKL and g is defined by (2.7)1. With the particular

constitutive equations (i.e. generalized Hooke's law) used here and the work

assumption of Naghdi and Trapp (1975b), 0 can be expressed as

r (2.10)

and in fact since r +A >0, r alone may be used to characterize the

strain-hardening behavior (Casey and Naghdi 1984b, Eqs. (4.50) and (4.51)).

rt was demonstrated recently by Casey and Naghdi (1984a, Eq. (3.8)) that
the quantity 0 is equal to the determinant of a certain rate-independent
fourth-order tensor which plays a fundamental role in the theory of plasticity
and which arises naturally in relating the time rate of stress to the time rate
of strain.

11
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3. Equations for a Two-Dimensional State of Stress

Consider now the homogeneous deformation of an elastic-plastic

material sustained by a biaxial state of stress (one normal component and

one shearing component) in which the corresponding two components of strain

are prescribed functions of time. Lamba and Sidebottom (1978a,b) modelled

this experimentally by performing a Strain-controlled combined tension-

torsion test of a thin-walled circular cylinder in which the axial strain

and the shear strain were prescribed functions of time. With the notation

s M for the axial stress and sl 2 (t) for the shear stress, the two-

dimensional state of stress can be represented in matrix notation as
i". ITKLII -' ll I~KII+l21 aKLI , T=1 I , a

IKI 11JI~b KLI I1 +I sl2l1l (3.1)

where the constant matrices aKL and bKL defined by

IIaKLII - 1 'J o J bKL 1 (3.2)

are introduced for convenience.

The intended calculations require prescribing e11 and e12 parametrically

as particular functions of time (which specify a path in the ell-e 1 2 plane),

while the other two components of normal strain (e 22 and e33 ) remain so far

unspecified and hence unknowns. Since e =-el and 731 13  23

by (2.4 and (3.1), it follows that the plastic strain tensor can be expressed

in the form

II epLj - LIIP - ll IIbKLII +el2 IIaKLII (3.3)

where eP1 and eP2 depend only on time. From the stress response (generalized

Hooke's law) we have

Sll E(e1l-el) , l2 = 2i(e 12-e 2 ) , (3.4)

12
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where E is Young's modulus. From the inverted form of the stress response,

as well as (3.1 and (3.4), and after adopting the notation er - e22 = e33

we obtain
e 11 e 12 0

i~eKLII = el er 0 (3.5)

0 0 er

where

e I p - p
er "E S 11 -2e 11 -l 11  3.6)

and where v = (E-2)/2 i is Poisson's ratio. Equation (3.6) relates the

unspecified components of strain to the axial strain (which is known) and the

axial component of plastic strain. But er is still unknown, inasmuch as eP

remains unknown until all of the constitutive equations pertaining to a

particular two-dimensional strain path have been integrated.

In order to simplify some of the expressions that follow, we introduce

the abbreviations

M = sl-3a(& ) el , e (3.7)

Then, with the use of(3.1) to(3.6), the loading functions in(2.2)now assume

the simplified forms

Eell(Il +81,'[e12 (l "+ ' e
2g = 23M22N .

f +(3.8)
3

For the two-dimensional state of stress defined by (3.1), A is still given

by (2.8); but, on the yield surface, r in .9)now assumes the special form

11 <2N+ !(I +((s 11+ e ) + 3N(S s1 +6 e~2  (3.9)

In view of (3.1), (3.3, and (3.$, from (2.7) the quantity ^ occurring in the

loading criteria in strain space is given by

13



8. 8.T TO

(3. ia,b)
= 4 W Ei+ 8P Ndi + 4 3p-E)Mipl

-EM 11 +8~N12  3 +

and the corresponding quantity f in stress space is

I -- pll + 4N1i2  (3.11)

where in obtaining (3.1Ob) the time derivative of (3.6) has been used. It

should be noted that ^ depends on the unspecified strain rate e (or the

unknown axial plastic strain rate il); and hence the determination of

whether the state of strain at an elastic-plastic state is undergoing loading,

neutral loading, or unloading cannot in general be ascertained directly from

(3.10).

Since during loading the constitutive equation(2.4b) for the plastic

strain rate :ont-iins 9 on its right-hand side, in view of (3.10b) it is at

once obvious that e1 occurs on both sides of the equation in the case of

axial plastic strain rate. After solving this equation, a new form of the

constitutive equation results which depends only on the specified strain

rates ill and e12* This equation then enables the constitutive equations

for the other components of plastic strain rate to be expressed in terms of

*I only ell and also. This procedure along with(3.1) and (3.3) leads to the

following expressions for the non-zero plastic strain rates during loading
(g=0, >0)

*p 6M p N~ kp .dp - 4p (.2
1 3Q12 Q22 33 211(.)

where we have introduced the quantities Q and defined by

Q = r + A - 1 3p-E)M2  (3.13)
9

and

14
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1 ~(3u -E)M6P =Q-E1A +8jN (3.14)
11 3 11 +8N 1 2

It is shown in Appendix A under the assumption that Q > 0 always, which

represents a range of strain-hardening behavior sufficiently general for

our present purposes, that a knowledge of only the prescribed strain

rates e and e12 is sufficient to determine whether the material at an

elastic-plastic state is undergoing loading, neutral loading, or unloading.

In fact, with Q > 0 the quantity may be used in special loading criteria

appropriate for the particular problem under discussion. Thus, with Q > 0,

the constitutive equations for the plastic strain rate and the rate of work-

hardening may alternatively be expressed ast

0 ,if g < O, (a)

S 0 , if g = 0 and < 0, (b) (3.15)

eKL 0 ,if g = 0 and = 0, (c)

Eq.( 3.12), if g = 0 and 4 > 0, (d)

and

11 2 (1 1 s12 + e12) 2  ,(.6

where the loading criteria in (3.15a,b,c,d) correspond, respectively, to an

elastic state, unloading froman elastic-plastic state,neutral loading at an

elastic-plastic state, and loading at an elastic-.plastic state.

Wenote that during unloading and neutral loading it follows from (2.4a),

(3.4), (3.10b) and (3.11) that = = , while during loading from (3.4)

and (3.11) to (3.14) he have

Sr(g-, (3.17)

T We emphasize that the loading criteria in (3.1% derived from the general

form of the strain space loading criteria, and not postulated in an ad
hoc fashion.
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Results from the general theory similar to these and those obtained in

Appendix A are summarized in Table I of Casey and Naghdi (1984c).

Before closing this section, we need to comment further on the

restriction Q > 0 which bears on the loading criteria in (3.15. With

reference to (3.13), since r may be used to characterize the strain-hardening

behavior, with .E) and(3.8) the condition Q > 0 may be seen to include hardening

behavior (D>0) and perfectly plastic behavior (0-0), but at first sight may

appear to exclude a small range of softening behavior.§ However, it can

be shown (Appendix A) that at an elastic-plastic state with Q 4 0, the

applied strain rates ell and el2 can only be such that 0 • 0. But the

expression (3.14)2which occurs in the loading criteria(3.15)must be capable

of admitting all possible choices of ell and A12 ( and hence capable of

taking both positive and negative values) for all physically realistic

tests. Since a state corresponding to Q < 0 is unnecessarily restrictive,

it will be excluded from consideration in the present development.

rhis is because the condition Q > 0 places a greater restriction on r than
does the more general result r + A > 0 (which is a consequence of the work
assumption of Naghdi and Trapp, 1975b).

16

--- -mn mm m m mm m* " " '" " °' '" - -" "- *



!: L -. :. .- ' . - . . . . ; .- . . . . ... .i,-. -r -. , ; ! . ! l : _r ,

4. Determination of Material Constants. Details of Calculations.

Previously a procedure was suggested for determining the material

coefficients in the constitutive equations from the experimental data

in a uniaxial cyclic loading test (Naghdi and Nikkel, 1984). This

procedure is by no means unique; and, in fact, for data obtained from one-

dimensional tests, other than uniaxial cyclic tests, it may be desirable

to use a different procedure. Such alternative procedures are likely to be

more advantageous in two or three dimensional tests. With reference to

their experimental results for OFHC copper, Lamba and Sidebottom (1978a)

note that the peak axial stress attained after the material has been cycled

along a strain path such as that in Fig. l(a) is significantly higher than

the peak axial stress attained after simple uniaxial cycling. They go on to

state that this difference indicates that ". . . material properties

obtained from tensile tests or even uniaxial cyclic tests will not give

accurate predictions of cyclic deformation under nonproportional or out-of-

phase conditions." A conclusion of this kind cannot be made independent of

a particular theory used and does not follow from the knowledge of only a

part of the experimental measurements (e.g., a part of the measurements that

leads to the calculated s,,). Rather, it requires a detailed examination of

the entire experimental data in conjunction with the relevant constitutive

equations.

As can be seen from(3.7), 2 and(3.8)2 with i= s, (K)--a s and with f=O,

the expression for s in a two-dimensional cycling test depends on Sll, S12 ,

eP , e12 as well as ^= as. However, the expression for K in the case of a

a "peak" axial stress (i.e., the value of sll when s12 2 0) will depend only

on the axial stress Sll in addition to other parameters such as as and the

The term out-of-phase refers to the specification of e and e as sinusoidal

functions of time with the 90 degree phase difference 1tween RAem, resulting
in an elliptic path in the ell-e 12 plane.
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plastic strains. We further observe that in the biaxial tests under discussion

the value of the parameter ics which represents the size of the loading surface

in two-dimensions, is particularly sensitive to the values of the stresses but

much less so to the values of asand the plastic strains. In view of the

experimental result of Lamba and Sidebottom (1978a) mentioned in the previous

paragraph, ifi is determined from uniaxial cycling data alone, then the

theoretical prediction for the two-dimensional cycling experiments may not be

as accurate as when icsis determined from the entire experimental data Of d

two-dimensional strain cycling test.

We keep the foregoing discussion in mind when describing the alternative

procedure for determining the material coefficients in the constitutive

equations. A value for Kswill be determined from two-dimensional strain

cycling experiments. For our present purpose, it will suffice to determine
T

the other constants from uniaxial cycling data as before. Thus, a value for

Kfollows from f=O and the yield stress in uniaxial tension, and a value

0I

for ascan be determined from the slope of the uniaxial stress strain curve

at saturation. By selecting a point at saturation from the experimental data

for a two-dimensional cycling experiment, similar to points Q, R, S or T

shown in the calculated results in Figs. l(a-c) 'nd with the values of stress

and plastic strain at such a point of value for 7 may be deotermined from fo.

We took the value Ks to be the average of the values obtained from points R and T,

in order to have the best overall prediction for o all loadingpaths inthe 11- 12 plane.

The remaining constants may then be determined from the uniaxial cycling data

by the procedure described previously (Naghdi and Nikkel, 1984). Using the

above procedure with the experimental data of Lamba and Sidebottom (1978a,

Figs. 2 and 3(a-d)) for FHC copper the material constants were determined to

tIn contrast to fK for the relatively simple constitutive equations used here

the determinatioA of the other constants from the uniaxial tests seems to be

adequate.
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In the course of identifying values for the coefficients ao and as , it was

found that their values differed only by less than 0.3%. This suggests that

if this difference can be neglected, we could set ao as approximately and

then the coefficient n in(.5) and 2.6will no longer require an independent

identification. This would make the task of determination of the coefficients

much easier; and, in fact, with ao =a s the coefficient n can be determined in

terms of ao and B. To see this, we recall that in the special case in which

ao =cas E a (say) the constitutive equations used here reduce to a special case

of those employed previously by Caulk and Naghdi (1978, Eqs. (40), (56) and (70)1).

For their equations, they obtained the restriction n=- c B (see Eq. (7 in Caulk and

Naghdi, 1978). Inviewofthefactthatthevaluesdeterminedfora and a are essen-

tially the same, for the purpose of comparison with the experimental data of Lamba and

Sidebottom (1978a,b) for OFHC copper, it will suffice to take a = s ando 5

n = - o1 .

The calculations summarized in Section 1 were carried out by first

parametrically specifying the strains e11 and e12 as functions of time,

corresponding to a particular path in the e11-e12 plane. The constitutive

equations (3.15) and (3.16) were then integrated numerically with the values (4.1)

for the coefficients. Finally, the stresses were calculated using (3.4).

To calculate P in (2.10), a knowledge of A in (2.8) and r in (3.9) is

needed. The particular representation of r in (3.9) depends on the stresses,
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as well as the quantities M and N which also involve the stresses sll and s12.

Then, in view of (3.4), r may be expressed in terms of the total and plastic

strains. It follows that D depends on total and plastic strains, as well as on K.

But, from the fact that on the yield surface g = 0 with the function g given by

(3.8)1, it is possible to solve for K in terms of the other quantities so that

@ may be represented as a function of only e11 , el2, el and e2 It is of
il 12'1 12*

interest to plot the variation of P with plastic strains for fixed values of

e and e12. After making the substitutions indicated above, the dependence

of 0 on the total and plastic strains may be expressed in the form

11e E( 11 31 p - (1-2 (4.2)

For definiteness, we specify e11 = e12 = 0 and then calculate the value of

D for each epl, ep2 pair. The resulting plot using the values (4.1) is

shown in Fig. 4. It is clear from the arguments of the function D in

(4.2) that this single calculation provides all of the relevant information

on the variation of I; and, for any other specified values of ell and e12'

the surface plotted in Fig. 4 will not change in shape but will simply

translate parallel to the el -e plane by theconstant amounts

11 12 paeb hcntn mut

(1 + a) 1el (I " ao,-I (4.3)

in the e~l and e 2 directions respectively, It must be kept in mind that

the domain in the ep -ep11 12 plane must be such that the value of K corresponding

to the values of ell, e, e and ep is between K0 and Ks. In Fig. 4 the

outer boundary, with the smallest value of corresponds to K = K s and the

inner boundary, with the largest value of 0 corresponds to K = K0 . It should be

mentioned that some elastic-plastic states corresponding to points on the surface
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may not be reached by any path. For example, on the inner boundary in Fig. 4,

where K = K0 , the plastic strain is nonzero indicating some plastic deformation

must occur to reach an elastic-plastic state corresponding to this edge of the

surface. However, after plastic deformation has taken place K cannot have the

value K (the vail of < at initial yield) while the material exhibits hardening

behavior except in the special case of purely kinematic hardening. Thus, for the

plot displayed in Fig. 4, no actual elastic-plastic state corresponding to the

inner boundary of the surface can be reached.
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5. Concluding Remarks

In summary, a relatively simple set of constitutive ecuations is used to

predict various phenomena occurring in two-dimensional strain cycling in the

range of small deformation. The calculated predictions are compared with

corresponding experimental results of Lamba and Sidebottom (1978a,b) with

good qualitative agreements. It is noteworthy that even during the post-saturation

behaviour of the material, the constitutive equations used have adequate predictive

capabilities as demonstrated by the results in Figs, (2(a-c)) and Figs. (3(a-c)).

Also, it may be emphasized that the theoretical calculations successfully predict

the erasure of memory phenomenon which has significant practical utility in two-

dimensional, post-saturation strain cycling experiments. Clearly, by exploiting

this phenomenon, the response of a material to strain cycling along strain paths

in different directions can be determined by performing experiments on one specimen

if a large cycle which erases the material's memory of the preceding smaller cycle

is traversed after each smaller cycle.

The main differences between the present calculations and the experimental

results can be attributed primarily to the manner of identification of two of the

material constants at saturation, namely Ks and ast These values can be chosen

to be the same as those identified either from experiments in simple tension

(e12 = 0) or experiments in simple shear (e11 = 0),. The values resulting from

experiments in simple tension can lead to discrepancies in matching experiments

involving mainly simple shear (such as those in Figs. (2(a-c)) and (3(a-c)), and

likewise values chosen from experiments in simple shear will affect the agreements

between the theoretical and experimental results in simple tension. The choice for

the value of the constant is used in the calculations (for details see Sec. 4)

was motivated by a desire to obtain the best overall agreement with experimental

results for all directions of the strain paths in the e11-e12 plane. Similarly,

as noted in the last section, as was chosen to be equal to ao in order to simplify

22
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the identification of the material coefficients for OFHC copper. The slope of the

calculated response curve in the s12-e12 plane at saturation can be shown to

depend to some degree on as, so that if a more accurate prediction of the slope of

the curve during loading along FB in Fig, 2(c) is desired an alternative procedure

for determination of as could be used.

The plot displayed in Fig. 4 contains detailed information pertaining to

strain-hardening behaviour for the particular material used in the experiments

of Lamba and Sidebottom (1978a,b). Accessibility to such information or the data

representing for all values of total and plastic strains in the domain of

interest is clearly of value in analyses and computations. It should be possible

in principle to determine the value of D directly from experiments. Casey and

Naghdi C1984b, Eq. (4.29)) have previously shown that the function can be

interpreted in terms of the ratio of the outward rormal velocities of the yield

surfaces in stress space and in strain space. It is suggested that future

experimenters provide direct measurements concerning the yield surfaces in both

stress space and strain space and also consider the possibility of obtaining the

values of I directly in the course of their experiments.

We close this section with some remarks concerning additional experimental

data on two-dimensional cycling that have become available very recently.

In addition to the two elastic constants, there ar3 six material constants

(-to'sB'nl<os ) which must be determined from experimental results. However,

for the special case in which ao = Os as utilized in Section 4, an additional

restrictie cbtained! by Caulk and Naghdi (197P) can also be invokeO and this

reduces the number of independent constants to be determined to the four

(ao,,<o,<s ). With o 0 as' the calculations will involve more complex

expressions and plots (for different values of eill e12)of the function D will

exhibit changes in shape and will not simply represent translations of the

surface parallel to the ep -ep2 plane as in the case when =o 
=

5
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McDowell (1985) has reported experimental results for two-dimensional strain cycling

of a type similar to those of Lamba and Sidebottom (1978a,b); and in principle,

similar comparisons can be made with his data. However, the data provided in McDowell's

paper areinsufficient for the identification of all of the material constants

appearing in the constitutive equations used here.§ Also, it should be noted that our

approach for theoretical predictions differs from the "two surface stress space

model" used by McDowell (1985) for comparison with his experiments,

Ohashi et al. (1985) have reported some experimental data for two-dimensional

stress cycling. They do not discuss any theoretical predictions for comparison

with their experiments. While in principle, there should be no difficulty in making

such comparisons, the data provided is again ir;sufficient for the identification of

all of the material constants appearing in the constitutive equations used here.t

Acknowledgement. The results reported here were obtained in the course of

research supported by the Solid Mechanics Program of the U.S. Office of Naval
Research under Contract N00014-84-K-0264, Pro.iect NR 064-436 with the
University of California, Berkeley.

§McDowell's paper (1985) does not include the data for uniaxial st,-Iin cycling needed
for the identification of material constants in the context of the procedure used here.

tOhashi et al. (1985) do not perform any uniaxial strain cycling tests. The data
from such tests are necessary for identification of most of the material constants
using the procedure summarized in Sec. 4.
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Appendix A

We include here the details of the arguments which demonstrate that

the special loading criteria in(3 .lS) with § (rather than §) are consistent

with the loading criteria of the strain-space formulation, i.e., at an

elastic-plastic state with Q > 0 we establish the correspondence

< 0 9 0 , (unloading),

= 0 g = 0 , (neutral loading),

> 0 > 0 , (loading)

We first prove that at an elastic-plastic state with Q # 0, 0

if and only if = 0. Sufficiency follows from (3 .12 ),where if = 0 so is

e 0 and then from(3.14)^ = 0 also. To establish necessity suppose

+ =at 0. It then follows from (2.4) and (3.14 that ) = 0.

In view of the result of the previous paragraph note that at an

elastic-plastic state with Q # 0, ) # 0 if and only if # 0. We now

prove that atanelastic-plastic state with Q > 0, > 0 if and only if

0. To establish sufficienty suppose that ) > 0. If < 0, then ePL 0

by (2.4) and (3.14) implies = , which is a contradiction and hence

we must have > 0. To establish necessity, we.suppose that ) > 0, and

this implies that = (r +A)/Q from (3.171. In view of the fact that

F + A > 0 (Casey and Naghdi, 1984b, Eq. (4.50)) and the fact that we are

considering only the case in which Q > 0 this implies > 0.

As a consequence of the results of the preceding two

paragraphs, it follows that at an elastic-plastic state with Q > 0, < c 0

if and only if § < 0.

In the remainder of this appendix we demonstrate that if Q in (3.13) is
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nonpositive at an elastic-plastic state, i.e., if Q 0, then the applied

strain rates 1 and el2 can only be such that 0.

We first prove that with Q < 0 we can only have 0. Suppose > 0.

If 0 0, then .4) and (3.14 imply = which is a contradiction.

Alternatively if > 0, then g =(r +A)/Q from (3.17). In view of the

fact that r' + A > 0 (Casey and Naghdi, 1984b, Eq. (4.50)) and that we are

considering the case in which Q < 0, it follows that < 0 which is also a

contradiction. Hence, we can only have g ,O if Q < 0.

Next, we prove that ifQ=O, we can only have < 0. Again, suppose that

: >0. If 0 - 0, then (2.4) and(3.14 imply = § which is a contradiction.

Alternatively, if § > 0, with the use of the expression for ^ resulting from

(3.14)land the identity resulting from(3.13 after setting its left-hand side

equal to zero, the constitutive equation for the axial plastic strain rate

from(2.4b) implies = 0 which is also a contradiction. Hence we can only

have 0 if Q = 0.
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Captions for Figures

Fig. 1(a) Comparison of the stress trajectory in sll-sl2 plane (measured in

MPa). between the theoretical prediction (-) and the exper-

imental data (- - -) from Lamba and Sidebottom (1978a) for

OFHC copper; the numerical calculation of the theoretical

trajectory was effected with the use of (3.4), (3.15), (3.16) and the

constants (4.1). The prescribed strain path in the e We12

plane is shown in the inset. After initial elongation from

the undeformed state to point Q, the nearly elliptical path

QRSTQ is repeatedly traversed. While the path in the ell-e12

plane is cyclic, the remaining nonzero components of strain

do not necessarily return to the same values at the end of

each cycle. Comparison with the experimental data is shown

for the first few cycles only, since the portion of the

trajectory for additional cycles would crowd the figure.

Fig. 1(b) Comparison of the theoretical (-) axial stress response,

measured in MPa, with the corresponding experimental data

(- - -) of Lamba and Sidebottom (1978a) for OFHC copper

according to the prescribed strain path in the inset of Fig. l(a).

Comparison with the experimental data is shown for the first

few cycles only, since the portion of the curve for additional

cycles would crowd the figure.
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Captions for Figures (continued)

Fig. 1(c) Comparison of the theoretical (-) shear stress response,

measured in MPa, with the corresponding experimental data

(- - -) of Lamba and Sidebottom (1978a) for OFHC copper

according to the prescribed strain path in the inset of

Fig. 1(a). Comparison with the experimental data is shown

for the first few cycles only, since the portion of the curve

for additional cycles would crowd the figures.

Fig. 2(a) The theoretical stress trajectory in sll-Sl2 plane (measured in

MPa) calculated from (3.4), (3.15) and (3.16) for OFHC copper using the

constants (4.1). The prescribed strain path in the e -e12 plane is

shown in the inset. Calculation for a state of saturation was

obtained by first cycling in shear along B'D'B' in the e We12

plane for four cycles followed by cycling along the elliptical

path B'CD'EB' for four cycles. After this saturation was attained,

the smaller path BDBFB was repeatedly traversed. Only the portion

of the stress trajectory which corresponds to the (post saturation)

strain path BDBFB is shown.

Fig. 2(b) Comparison of the theoretical (-) axial stress response,

measured in MPa, with the corresponding experimental data (- - -)

of Lamba and Sidebottom (1978a) for OFHC copper according to the

prescribed strain path in the inset of Fig. 2(a). Only the

portion of the stress response which corresponds to the (post

saturation) strain path BDBFB is shown.



Captions for Figures (continued)

Fig. 2(c) Comparison of the theoretical (-) shear stress response,

measured in MPa, with the corresponding experimental data (- - -)

of Lamba and Sidebottom (l978a) for OFHC copper according to

the prescribed strain path in the inset of Fig. 2(a). Only the

portion of the stress response which corresponds to the (post

saturation) strain path BDBFB is shown.

Fig. 3(a) Comparison of the stress trajectory in sll-S12 plane (measured

in MPa) between the theoretical prediction (-) and the

experimental data (- - -) from Lamba and Sidebottom (1978b) for

OFHC copper; the numerical calculation of the theoretical

trajectory was effected with the use of (3.4), (3,15), (3.16) and the

constants (4.1). The prescribed strain path in the e11 -e12

plane is shown in the inset. Calculation for a state of

saturation was obtained in a similar manner to that in Fig. 2(a).

After the saturation was attained, the complex path 0-1, 1-2, ..

7-8 was repeatedly traversed. Only the portion of the stress

trajectory which corresponds to the (post saturation) strain path

0-8 is shown.

Fig. 3(b) Comparison of the theoretical (-) axial stress response,

measured in MPa, with the corresponding experimental data (- - -)

of Lamba and Sidebottom (1978b) for OFHC copper according to the

prescribed strain path in the inset of Fig. 3(a). Only the

portion of the stress response which corresponds to the (post

saturation) strain path 0-8 is shown.
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Captions for Figures (continued)

Fig. 3(c) Comparison of the theorttical (-) shear stress response,

measured in MPa, with the corresponding experimental data (- - -)

of Lamba and Sidebottom (1978b) for OFHC copper according to the

prescribed strain path in the inset of Fig. 3(a). Only the

portion of the stress response which corresponds to the (post

saturation) strain path 0-8 is shown.

Fig. 4' A geometrical representation of the function € (which characterizes

strain-hardening) as a surface exhibiting its dependence on the

plastic strain components eP andJ12' plotted for fixed values

of the total strains (in this figure taken to be el=e1 2=O) for

OFHC copper having the material constants specified in (4.1).

For different values of e11 and e12, the surface merely translates

parallel to the planeof(eP , ep2 ) but does not change its shape.

An example of how the value of 0 may be determined from this

plot is also indicated: At a typical point on the surface, the

values of the plastic strains e, ep are known (the coordinate
11' 12arknw(tecodae

curves on the surface are drawn at plastic strain intervals of

0.0002) and the corresponding point in the • l
p -ep 2 plane is

located. Then, the value of t is measured by comparing the

vertical distance between the point on the plane and the point

on the surface with the scale on the 0 axis.
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